
LA-UR-19-24739
Approved for public release; distribution is unlimited.

Title: Gradient-Free Construction of Active Subspaces for Dimension Reduction

Author(s): Williams, Brian J.
Coleman, Kayla
Smith, Ralph C.
Morris, Max D.

Intended for: Archives

Issued: 2019-05-22



Disclaimer:
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by Triad National Security, LLC for the National
Nuclear Security Administration of U.S. Department of Energy under contract 89233218CNA000001.  By approving this article, the publisher
recognizes that the U.S. Government retains nonexclusive, royalty-free license to publish or reproduce the published form of this contribution,
or to allow others to do so, for U.S. Government purposes.  Los Alamos National Laboratory requests that the publisher identify this article as
work performed under the auspices of the U.S. Department of Energy.  Los Alamos National Laboratory strongly supports academic freedom
and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.



Kayla Coleman, Ralph C. Smith (NCSU) 

Max Morris (ISU)

Gradient-Free Construction of 
Active Subspaces for 
Dimension Reduction

Brian J. Williams (LANL)

Dimension
0 100 200 300 400

R
oo

t M
ea

n 
Sq

ua
re

d 
Er

ro
r

10-4

10-3

10-2
Gradient-Based
Initialized AM

!

    6 ss-304 - bpr clad
    5 air in bprs
    4 borosilicate glass
    3 water
    2 cladding
    1 2.561 wt % enriched fuel
    7 rod n-9

    6 ss-304 - bpr clad
    5 air in bprs
    4 borosilicate glass
    3 water
    2 cladding
    1 2.561 wt % enriched fuel
    7 rod n-9



2

Abstract

Recent developments in the field of reduced order modeling - and in 
particular, active subspace construction - have made it possible to 
efficiently approximate complex models by constructing low-order 
response surfaces based upon a small subspace of the original high 
dimensional parameter space. These methods rely upon the fact that 
the response tends to vary more prominently in a few dominant 
directions defined by linear combinations of the original inputs, 
allowing for a rotation of the coordinate axis and a consequent 
transformation of the parameters. In this talk, we discuss a gradient 
free active subspace algorithm that is feasible for high dimensional 
parameter spaces where finite-difference techniques are impractical. 
We illustrate an initialized gradient-free active subspace algorithm for 
a neutronics example implemented with SCALE6.1, for input 
dimensions up to 7700.
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Dimension Reduction
• The statistics community has been interested in dimension reduction 

methods for regression problems for 25+ years

– Introduction of sliced inverse regression (SIR) and sliced average 

variance estimation (SAVE) in 1991

• Statistical formulation: Estimate the central subspace
– Regress response Y = f(X) on a random m-vector of inputs X
– Intersection of all subspaces ! with the property that Y is conditionally 

independent of X given the projection of X onto !
– Result is a set of n < m orthogonal linear combinations of X

• [Xia, Annals of Statistics 2007] introduced nonparametric methods to 

estimate ! exhaustively

– Compared performance to SIR, SAVE, principal Hessian direction (PHD), 

and minimum average variance estimation (MAVE)

• [Cook et al., JASA 2009] introduced a likelihood method for 

estimating ! termed likelihood acquired directions (LAD)

– Compared performance to SIR, SAVE, and directional regression (DR)

– Assumes conditional normality but robust to non-normality

– Likelihood ratio statistic, AIC, BIC used to choose n
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Active Subspaces 
Motivation:
• Some UQ problems involve high-dimensional input spaces that present 

challenges for standard surrogate and model calibration algorithms
– e.g. 7700 cross section perturbations in a PWR quarter fuel lattice
– 10k – 100k+ parameters possible in CIPS Challenge Problem

• Typically sensitivity analysis would substantially reduce this dimension as 
most parameters have a relatively small influence on the QoIs

• Popular active subspace methods seek to find a substantially reduced set 
of parameters formed as linear combinations of the original parameters
– Conceptual similarities to statistical dimension reduction methods
– If possible identify a set of 100 or fewer active parameters

• Use gradients to identify active parameters if they are produced by the 
code. Otherwise, gradient free approaches must be considered
– Active area of research

Goal: Using a new gradient free algorithm for active subspace 
discovery, determine active parameters for use in surrogate 
construction and model calibration
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Active Subspace Construction

Example:

• Varies most in [0.7, 0.3] direction

• No variation in orthogonal direction

y = exp(0.7x1 + 0.3x2)

!

Strategy:

• Employ gradient-based or gradient-free techniques, in combination with 
SVD or QR to construct active subspace.

• Employ active subspaces for:
- Linear Karhunen-Loeve expansion-based UQ
- Surrogate or reduced-order model construction

- Model calibration 

• Outputs may vary significantly in only a 
few “active” directions, which may be 
linear combinations of inputs.

Note: 
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Gradient-Based Active Subspace
Active Subspace: See [Constantine, SIAM 2015]. Consider 

f = f(x), x 2 X ✓ Rm

and

r
x

f(x) =


@f

@x1
· · · @f

@xm

�T

Construct outer product

Partition eigenvalues:

Rotated Coordinates:

C = W⇤WT

⇤ =


⇤1

⇤2

�
, W = [W1 W2]

y = W

T
1 x 2 Rn and

z = W

T
2 x 2 Rm�n

C =

Z
(r

x

f)(r
x

f)T ⇢dx
r(x) : distribution of input x parameters
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Motivation

Results:

(1) �i =

Z ⇣
(r

x

f)T wi

⌘2
⇢(x) dx

Derivative of f(x) in the direction wi

Z
(rzf)

T (rzf) ⇢(x) dx = �n+1 + · · ·+ �m(2)

• n can be chosen by looking for a ”large” gap between ln and ln+1,
such that ln+1 + … + lm is relatively “small”

f(x) ⇡ g(WT
1 x)(3) g is a link function
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Active and Central Subspaces

• Suppose f(x) = g(y) for

• Inputs and output are therefore conditionally independent given the 
active variables, and so the active subspace defined by the columns 
of W1 contains the central subspace 

⇡(f(x),x|y) = ⇡(g(y),x|y)
= ⇡(g(y)|y,x)⇡(x|y)
= ⇡(g(y)|y)⇡(x|y)
= ⇡(f(x)|y)⇡(x|y)

y = W

T
1 x



9

Estimation
Approximation via Monte Carlo:

1. Draw M samples { xj } independently from r(x)
2. For each xj, compute
3. Approximate

4. Compute the eigendecomposition

r
x

fj = r
x

f(xj)

C ⇡ Ĉ =
1

M

MX

j=1

(r
x

fj) (rx

fj)
T

Ĉ = Ŵ⇤̂ŴT

Steps 3 and 4 equivalent to computing the SVD of the gradient matrix

G =
1p
M

[r
x

f1 · · ·rx

fM ] = Ŵ⇤̂1/2V̂

" = ||W1W
T
1 � Ŵ1Ŵ

T
1 ||2 = ||Ŵ T

1 W2||2
Error in estimated active subspace:

"  4�1�

�n � �n+1

d is a user-specified tolerance for the
eigenvalue estimates (used to choose M)
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Order Determination

1. Gap-based
• Stop at largest gap in eigenvalue spectrum

2. Error-based
• Specify error tolerance etol, G = U L1/2 VT

a) Draw a sequence of p standard Gaussian vectors { w1, …, wp }
b) Let             be the first j columns of U
c) Let

• Find smallest j for which
• Error bound holds with probability 1 – 10-p

3. PCA-based
• Stop at minimal dimension yielding variance explained in covariance matrix

formed from G exceeding user-specified threshold (e.g. 99%)
4. Response surface-based

• Use the minimal dimension required to reduce response surface error on a
validation dataset below a user-specified threshold (e.g. 0.01, 0.001)

Ũm⇥j

"jupp = 10

p
2/⇡ max

i=1,...,p
||(I� ˜U ˜UT

)G!i||

"j
upp

< "
tol

Goal: Determine dimension of active subspace
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Gradient Approximation for Large Input Spaces

• Utilized when finite difference approach to gradient approximation is 

computationally prohibitive; e.g., SCALE6.1 with 7700 inputs.

• Construct ellipsoid where linearity is reasonable assumption.

• Maximize function values and gradient information using “great ellipsoid” 

relations.

Iteration 1
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“Great Ellipsoid” Solution

• Consider a matrix C collecting h+1 input samples from the surface of 
the unit hypersphere:

• Collect the sampled output differences into a vector y:

• The direction of steepest ascent within the column space of C is given 
by:

C =
⇥
w v1 · · · vh

⇤

y =
⇥
g(w)� g(0) g(v1)� g(0) · · · g(vh)� g(0)

⇤T

u
max

=
C

�
CTC

��
y

q
yT (CTC)� y
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SCALE6.1: High-Dimensional Example
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Figure 5: (a) Response surface errors for each method using a 5th-order multivariate
polynomial regression fit.

4.3 Example 3: 7700 input example SCALE6.1

Our final example has an input space of R7700, rendering our gradient-free algorithms
computationally infeasible without the use of the initialization algorithm of Section 3.
The problem construction is identical to that of Example 4.2, where we perturb the cross-
sections for the materials and reactions specified in Table 3, and fix all others to their
reference values provided by the SCALE6.1 cross-section libraries.

Due to the size of the input space, we use only the initialized adaptive Morris al-
gorithm, comparing our results to the gradient-based results obtained from the SAMS
module. The initialization algorithm allows us to begin Algorithm 2 with a subset of 147
important directions rather than approximating directional derivatives in all 7700 original
input directions. The adaptive Morris algorithm is quickly able to improve upon the di-
rections contributed by the initialization algorithm and reduce the number of important

Materials Reactions

234

92

U 10

5

B 31

15

P ⌃
t

n Ñ �

235

92

U 11

5

B 55

25

Mn ⌃
e

n Ñ p

236

92

U 14

7

N
26

Fe ⌃
f

n Ñ d

238

92

U 15

7

N 116

50

Sn ⌃
c

n Ñ t

1

1

H 23

11

Na 120

50

Sn ⌫̄ n Ñ 3He

16

8

O 27

13

Al
40

Zr � n Ñ ↵

6

C
14

Si
19

K n Ñ n

1
n Ñ 2n

Table 3: Materials and reactions for the 7700-input example.

20

Note: We cannot efficiently approximate all directional derivatives 
required to approximate the gradient matrix. Requires an efficient 
gradient approximation algorithm.

Setup:

• Input Dimension: 7700

• Output keff
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SCALE6.1: High-Dimensional Example
Setup:

• Input Dimension: 7700

SCALE Evaluations:

• Gradient-Based: 1000

• Initialized Adaptive Morris: 18,392 
(0.20%)

• Projected Finite-Difference: 
7,701,000

Active Subspace Dimensions:
Eigenvalue
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Figure 8: (a) First 300 eigenvalues for the 7700-input example. (b) Response surface RMSE
values for the first 450 dimensions. (c) First 350 error upper bounds given by Algorithm 3
for the 7700-input example.

methods are plotted in Figure 8(a).
In Table 4, we report the dimensions selected by the criteria of Section 2. We again

observe the first major gaps in the eigenvalue spectrum after the first eigenvalue for both
methods. The PCA and error-based criteria yield more conservative estimates for the
gradient-based method. The error upper bounds are plotted in Figure 8(c). We observe a
steady decline in the error for the gradient-based method over the first 350 dimensions. For
the initialized adaptive Morris method, the errors are machine epsilon once the eigenvalues
drop o↵, since the error-based criteria is strongly related to the decay in the eigenvalue
spectrum.

The root mean squared errors (5) for the 1st-order multivariate polynomial response
surfaces are plotted in Figure 8(b) for the first 450 dimensions. The slower decay observed
in the initialized adaptive Morris errors is due to di↵erence in eigenvalue spectrum; columns
3 through 450 contribute very little to the decrease in response surface error because of their
correspondingly insignificant eigenvalues. To visually depict the accuracy of the response
surfaces, we plot the observed k

e↵

values for 100 testing points versus the predicted outputs
using the 25-, 75-, 150-, and 300-dimensional active subspaces for the two methods in
Figure 9. As the number of dimensions increases, we observe a tighter fit to the diagonal
axis that represents a perfect match in predicted versus observed outputs.

Gap PCA Error Tolerance

Method 0.75 0.90 0.95 0.99 10´3 10´4 10´5 10´6

Gradient-Based 1 2 6 9 24 1 13 90 233
Initialized AM 1 1 1 1 2 1 2 2 2

Table 4: Active subspace dimension selections for gap-based criteria [6], principal com-
ponent analysis with varying threshold values [9], and error-based criteria with varying
tolerances [7] for the 7700-input example.

22
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SCALE6.1: High-Dimensional Example
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Improved Gradient Approximation

• Can the function evaluations utilized for gradient approximation be 
selected more efficiently?

• At iteration i, the direction of steepest ascent within a randomly 
determined subspace Mi (which also contains the direction of 
steepest ascent from iteration i – 1 for i > 1) is determined

• For the assumed linear approximation, at iteration i the function does 
not vary in the orthocomplement Oi in Mi of the direction of steepest 
ascent

• At iteration i, define a subspace Si spanned by the accumulated 
orthocomplements from previous iterations (Si = span{O1, …, Oi-1}), 
and ensure the subspace Mi in which the steepest ascent direction is 
to be found is restricted to the orthocomplement of Si

• At most d iterations required to converge to the gradient:
dX

i=1

dim(Mi) = m+ d� 1
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• Consider a k-dimensional subspace defined by the column space of a 
matrix M in which the gradient is currently approximated by z+. It can 
be shown that

• We assume the unknown normalized gradient vector z is uniformly 
distributed on the unit sphere, and consider the distribution of the 
cosine of the angle between the random quantities z and z+:

• The mean and standard deviation of ! are approximated as follows:

Quality of Gradient Approximation

� =

r
zTPMz

zTz
, z ⇠ Nm(0, Im)

z+ =
P

M

(r
x

f)

||P
M

(r
x

f) ||

E[�] ⇡
r

k

m
, SD[�] ⇡ 1

m

r
m� k

2
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Quality of Gradient Approximation

• Uncertainty in error decreases with increasing input dimension
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Elliptic PDE: Moderate-Dimensional 
Example 
• Consider the following equation:

• Boundary conditions: u = 0 (left, top, bottom);                  on right (Γ2)

• a(s, x) is taken to be a log-Gaussian second-order random field (m = 
100): 

• Response of interest:

• Standard finite element method used to discretize this elliptic problem, 
producing f(x) and the adjoint-computed

�rs · (a(s,x)rsu(s, a(s,x))) = 1 , s 2 [0, 1]2

@u

@s1
= 0

log(a(s,x)) =

mX

i=1

xi
p
�i �i(s)

f(x) =
1

|�2|

Z

�2

u(s,x) ds

r
x

f(x)
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Elliptic PDE: Moderate-Dimensional 
Example
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SCALE6.1: Moderate-Dimensional Example

!!!! !
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:!!U02!
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:!!Zirc4!
:!!H2O/Boron!

!

Setup:

• Material: 

• Cross-sections:

• Energy groups: 44

• Total input dimension: 44

• Output: 

U235
92

keff

⌃f (E)
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SCALE6.1: Moderate-Dimensional Example
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Gradient-Free Active Subspaces

Papers:
• A. Lewis, R.C. Smith and B. Williams (2016), “Gradient free active 

subspace construction using Morris screening elementary effects,” 
Computers and Mathematics with Applications, 72(6), 1603-1615.

• K.D. Coleman, A. Lewis, R.C. Smith, B. Williams, M. Morris and B. 
Khuwaileh (2019), “Gradient-free construction of active subspaces for 
dimension reduction in complex models with applications to neutronics,” 
SIAM/ASA Journal on Uncertainty Quantification, 7(1), 117-142.

Present and Future Work:
• Integrate gradient approximation algorithm into Sandia’s Dakota 

software.
• Continued investigation of response surfaces constructed from active 

parameters in Bayesian model calibration applications.

Observations:
• If available, use gradient information to identify active subspaces.
• Many legacy codes do not calculate gradients. In these cases, gradient-

free active subspace discovery is required.
• For complex codes, strategies required to reduce computational effort.


